
  

Performance improvements in 
PostgreSQL 9.5 (and beyond)

pgconf.de 2015, November 27, Hamburg

Tomas Vondra
tomas.vondra@2ndquadrant.com



  

PostgreSQL 9.5, 9.6, ...

● many improvements
– many of them related to performance

– many quite large

● release notes are good overview, but ...
– many changes not mentioned explicitly

– often difficult to get an idea of the impact

● many talks about new features in general
– this talk is about changes affecting performance



  

What we'll look at?

● PostgreSQL 9.5
● PostgreSQL 9.6+

– committed

– still being worked on (commitfests)

● only “main” improvements
– complete “features” (multiple commits)

– try to showcase them, show the impact

– no particular order

● won't mention too many low-level optimizations



  

slides

http://www.slideshare.net/fuzzycz/performance-in-pg95

test scripts

https://github.com/2ndQuadrant/performance-in-pg95



  

PostgreSQL 9.5



  

Sorting

● allow sorting by inlined, non-SQL-callable functions
– reduces per-call overhead

● use abbreviated keys for faster sorting
– VARCHAR, TEXT, NUMERIC

– Does not apply to CHAR values!

● stuff using “Sort Support” benefits from this
– CREATE INDEX, REINDEX, CLUSTER

– ORDER BY (when not executed using an index)



  

Sorting

CREATE TABLE test_text_random AS
SELECT md5(i::text) AS val
  FROM generate_series(1, 50.000.000) s(i);

CREATE TABLE test_text_asc AS
SELECT * from test_text_random
 ORDER BY 1;

SELECT COUNT(1) FROM (
   SELECT * FROM test_text_random ORDER BY 1
) foo;
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Hash Joins

● reduce palloc overhead
– dense packing of tuples (trivial local allocator, same life-span)

– significant reduction of overhead (both space and time)

● reduce NTUP_PER_BUCKET to 1 (from 10)
– goal is less that 1 tuple per bucket (on average)

– significant speedup of lookups

● dynamically resize the hash table
– handle under-estimates gracefully

– otherwise easily 100s of tuples per bucket (linked list)



  

Hash Joins

CREATE TABLE test_dim AS

SELECT (i-1) AS id, md5(i::text) AS val

  FROM generate_series(1,100.000) s(i);

CREATE TABLE test_fact AS

SELECT mod(i,100.000) AS dim_id, md5(i::text) AS val

  FROM generate_series(1,50.000.000) s(i);

SELECT count(*) FROM test_fact

                JOIN test_dim ON (dim_id = id);
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Indexes

● CREATE INDEX
– avoid copying index tuples when building an index (palloc overhead)

● Index-only scans with GiST
– support to range type, inet GiST opclass and btree_gist

● Bitmap Index Scan
– in some cases up to 50% was spent in tbm_add_tuples

– cache the last accessed page in tbm_add_tuples

● BRIN
– block range indexes, tracking min/max per block
– only bitmap index scans (equality and range queries)



  

Bitmap build speedup

CREATE EXTENSION btree_gin;

CREATE TABLE t AS

SELECT (v / 10)::int4 AS i

  FROM generate_series(1, 5.000.000) AS v;

CREATE INDEX idx ON t USING gin (i);

SET enable_seqscan  = off;

SELECT * FROM t WHERE i >= 0;

SELECT * FROM t WHERE i >= 100 AND i<= 100;
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BRIN Indexes

-- data preparation

CREATE TABLE test_bitmap AS
SELECT mod(i, 100.000) AS val
  FROM generate_series(1, 100.000.000) s(i);

CREATE INDEX test_btree_idx ON test_bitmap(val);
CREATE INDEX test_brin_idx ON test_bitmap USING brin(val);

-- benchmark

SET enable_seqscan = off;
SET enable_indexscan = off;

SELECT COUNT(*) FROM test_bitmap WHERE val <= $1;
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Aggregate functions

● Use 128-bit math to accelerate some aggregation functions.
– some INT aggregate functions used NUMERIC for internal state

– requires support for 128-bit integers (if provided by compiler).

● impacted aggregates
– sum(int8)

– avg(int8)

– var_*(int2)

– var_*(int4)

– stdev_*(int2)

– stdev_*(int4)



  

Aggregate functions

CREATE TABLE test_aggregates AS 

SELECT i AS a, i AS b

  FROM generate_series(1, 50.000.000) s(i);

SELECT SUM(a), AVG(b) FROM test_aggregates;
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PL/pgSQL

● Support "expanded" objects, particularly arrays, for better 
performance.

● Allocate ParamListInfo once per plpgsql function, not once per 
expression.

● Use standard casting mechanism to convert types in plpgsql, 
when possible.

● Use fast path in plpgsql's RETURN/RETURN NEXT in more 
cases.



  

Planner and optimizer

● remove unnecessary references to left outer join subqueries

● pushdown of query restrictions into window functions

● simplification of EXISTS() subqueries containing LIMIT

● teach predtest.c that "foo" implies "foo IS NOT NULL"

● improve predtest.c's ability to reason about operator 
expressions



  

Locking and concurrency

● checksum improvements
– Speed up CRC calculation using slicing-by-8 algorithm.

– Use Intel SSE 4.2 CRC instructions where available.

– Optimize pg_comp_crc32c_sse42 routine slightly, and 
also use it on x86.

● add a basic atomic ops API abstracting away 
platform/architecture details.

● reduce lock levels of some trigger DDL and add FKs



  

Locking and concurrency

● Improve LWLock scalability.
● various shared buffer improvements

– Improve concurrency of shared buffer replacement

– Increase the number of buffer mapping partitions to 128.

– Lockless StrategyGetBuffer clock sweep hot path.

– Align buffer descriptors to cache line boundaries.

– Make backend local tracking of buffer pins memory efficient

– Reduce the number of page locks and pins during index scans

– Optimize locking a tuple already locked by another subxact
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PostgreSQL 9.6+



  

Parallel Seq Scan

SET max_parallel_degree = 4;

SELECT COUNT(*) FROM test_parallel WHERE test_func(a, 1);

                          QUERY PLAN

------------------------------------------------------------

 Aggregate  (cost=15411721.93..15411721.94 rows=1 width=0)

   ->  Gather  (cost=1000.00..15328388.60 rows=33333330 width=0)

         Number of Workers: 4

         ->  Partial Seq Scan on test_parallel 

                   (cost=0.00..5327388.60 rows=33333330 width=0)

               Filter: test_func(a, 1)
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TABLESAMPLE

SELECT * FROM t TABLESAMPLE sampling_method (args)

                [REPEATABLE (seed)]

SELECT * FROM t TABLESAMPLE BERNOULLI (33.3);

SELECT * FROM t TABLESAMPLE SYSTEM (33.3);

-- tsm_system_rows

SELECT * FROM t TABLESAMPLE SYSTEM_ROWS (1000);

-- tsm_system_time

SELECT * FROM t TABLESAMPLE SYSTEM_TIME (1000);
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Aggregate functions

● some aggregates use the same state
– AVG, SUM, …

– we’re keeping it separate and updating it twice

– but only the final function is actually different

● so …

Share transition state between different

aggregates when possible.



  

Aggregate functions

CREATE TABLE test_aggregates AS 

SELECT i AS a

  FROM generate_series(1, 50.000.000) s(i);

SELECT SUM(a), AVG(a) FROM test_aggregates;
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Disabling HOT cleanup

● HOT allows UPDATEs without bloating indexes
– a page may have and many “previous” tuple versions
– the dead versions are cleaned by VACUUM or by 

queries reading the block
– single query may be forced to cleanup the whole table 

(e.g. after a batch update)

– clear impact on performance, a bit unpredictable

● the patch attempts to somehow limit the impact
– query only fixes limited number of pages, etc.



  

Checkpoints

● continuous flushing (and sorting writes)
– more about variance than about throughput

– eliminate latency stalls / spikes due to checkpoints

– effect depends on I/O scheduler, storage, ...

● compensate for full_page_writes
– spread checkpoints assume constant WAL rate

– not really true due to initial rush to write full pages

– scheduling gets confused by this difference

– patch tries to compensate for this effect



  

Freezing large tables

● every time we “run out of XIDs” we need to freeze tuples
– we have to scan all the tables to freeze all pages

– even if many of the pages are already “fully frozen”

– serious problem on large databases

– users often postpone the freezing (and then DB shuts down)

● add “all tuples frozen” into visibility map
– allows skipping already frozen pages

● patch seems mostly ready
– mostly discussions about renaming (vm or vfm?)



  

Additional 9.6+ changes

● Locking and concurrency
– Reduce ProcArrayLock contention by removing backends in batches.

● PL/pgSQL
– Further reduce overhead for passing plpgsql variables to the executor.

● Planner / Optimizer
– Unique Joins

– Index-only scans with partial indexes

– FK join estimates

– Selectivity estimation for intarray

– Table Partition + Join Pushdown

– FDW join pushdown



  

Additional 9.6+ changes

● Declarative partitioning
– easier maintenance (huge improvement)

– allows advanced planning (insight into partitioning rules)

● Sorting
– Reusing abbreviated keys during second pass of ordered [set] 

aggregates

– SortSupport for text - strcoll() and strxfrm() caching

– Memory prefetching while sequentially fetching from SortTuple 
array, tuplestore

– Using quicksort and a merge step to significantly improve on 
tuplesort's single run "external sort"



  

http://pgconf.de/feedback
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